

NOTICE

Weight and balance or operating limitation changes shall be entered in the appropriate aircraft record. An alteration must be compatible with all previous alterations to assure continued conformity with the applicable airworthiness requirements.
8. Description of Work Accomplished
(If more space is required, attach additional sheets. Identify with aircraft nationality and registration mark and date work completed.)

Nationality and Registration Mark
Date
1/. Removed existing lap belts and installed new Amsafe lap/shoulder belts, part number 4013-1-01A-8088, rev A, Lot No. A1107 to existing lap belt attach points and on to new shoulder attach points as described below.
2/. Installed new shoulder belt attach points per Alon/Ercoupe Shoulder Harness Documentation Package dated 11/23/2000. attached.
3/. As a CAR 3 Certificated Aircraft built prior to July 191978 this aircraft is eligible to be altered with front seat shoulder harnesses as a minor alteration in accordance with FAA Policy Letter ACE-00-23.561-01, dated 9-19-2000. 4/. Weight and Balance Data: Attach structure: 1.7 lbs at +90 inches. Seat belts: 4.2 lbs at +54 . Removed seat belts: 1.9 lbs at 52 inches. New airplane weight and balance computed and entered into airplane logbook.
5/. Equipment List updated.
6/. See attached Instructions for Continued Airworthiness.
end

INSTRUCTIONS FOR CONTINUED AIRWORTHINESS (ICA) Shoulder Belt Installation

A/C Make: Ercoupe
Rev: $\underline{0}$

Model: $\underline{415-\mathrm{C}} \quad \mathrm{S} / \mathrm{N}: \underline{2792}$
Date: 5/23/2008

System: Airframe

Item	Subject
1.	Introduction: The original Erco model 415 design did not provide for occupant shoulder harnesses. This installation alteration enhances safety aspect for pilot and passenger by providing a shoulder restraint system when used in conjunction with the existing seat belts. Parts for installation include the following: Amsafe lap/shoulder belts, part number 4013-1-01A-8088, rev A, Lot No. A1107 Aircraft Spruce P/N Qty Description 03-16700-1 $1 \mathrm{ft} \quad 1015 / 1020$ Bush $3 / 8 \mathrm{x} .0651 \mathrm{ft}$ 03-20300- $3 \mathrm{ft} \quad 4130$ Round Steel Bar $1 / 4$ 03-28360 2'x2' 2024T3 Alum sheet . 063 x 03-46900-2 $\quad 2 \mathrm{ft} \quad$ 2024T3 Angle $5 / 8 \times 5 / 8 \times 1 / 16$ AN315-4R 4 Nut, Full Hex AN365-428A 4 Net, Elastic Stop AN4-7A Bolt Undrilled AN665-34R 2 Clevis Tie Rod Term AN935C516 6 SS Lock Washer AN970-4 8 Washer, Flat
2.	Description: The restraint system is installed IAW the attached drawing "Shoulder Harness Installation in Ercoupe N2169H. This installation does not affect with any component or system in the aircraft. Added two stiffeners on the aft sides of frame F and G at BL 5L and BL 5R. Stiffeners are made from . 063 inch thick 2024-T3 Aluminum using 0.90 inch bend radii. Installed two additional AN470-3-4A rivets common to the skin and frames F and G at the stiffener locations (total five AN470-3-4A common to skin and frames at stiffener locations). Installed 0.25 inch diameter threaded steel rod through frames F and G centered on the stiffeners, left and right sides. Attach steel rod to frames F and G using AN hardware. Installed clevis tie rod fitting on forward side of frame F. Attach Amsafe seatbelt/shoulder harness assembly to clevis tie rod fitting and existing lap belt attach fittings. All work performed per AC 43.13-1B and AC 43.13-2A.
3.	Control, Operation Information: None, this modification does not modify the flight characteristics of the airplane.
4.	Servicing Information: None
5.	Maintenance instructions: Inspection intervals are concurrent with the aircraft inspection procedures.

6.	Troubleshooting Information: None required
7.	Removal and replacement Information: Standard maintenance practices apply
8.	Diagrams: See attachments
9.	Special Inspection Requirements: None
10.	Application of Protective Treatments: None
11.	Data: Standard aircraft hardware and general torque specifications apply
12.	List of Special Tools: None
13.	For Commuter Category Aircraft: No applicable instructions for this area
14.	Recommended Overhaul Periods: None
15.	Airworthiness Limitation Section: "No additional airworthiness limitations"
16.	Revisions: A letter will be submitted to the local FAA Office with a copy of the revised FAA Form 337 and revised ICA. "The attached revised/new Instructions for Continued Airworthiness (dated major alteration have been accepted by the FAA, superseding the Instructions for Continued Airworthiness (dated maintenance record entry will be made, identer iffying the revision, its location, and date on the 337.

Signature: \qquad Date: \qquad
FAA airframe / powerplant certificate number: \qquad

Alon/Ercoupe Shoulder Harness
 11/23/2000

Documentation Package

Contents:

Cover Letter
Harness Installation Description
Structural/Stress Analysis
Drawing - Stiffener Brackets
Drawing - Rod
(7) Photographs

Alon/Ercoupe Shoulder Harness Bill of Materials

The following is required for each installed harness (multiply quantity by 2 if both pilot and passenger harnesses are being installed). Aircraft Spruce part numbers are given:

Purchased hardware:

(1) AN665-34R Threaded Clevis Tie Rod Terminal
(3) MS35333-40 Type A Lock Washers
(2) AN315-4R Nuts
(2) AN365-428A Elastic Stop Nut
(4) AN970-4 Flat Washer
(8) AN470-3-4 A Solid Rivets (Stiffener to Frame)
(A/R) AN470-3-3 A Solid Rivets (Frame to Skin - see text)
(1) AN4-7A Bolt

Miscellaneous:
Alodine
Zinc Chromate
Grommet (to dress clevis terminal at hat shelf bulkhead)

Fabricated parts:

Rod - fabricate from $1 / 4$ " diameter, 4130 steel rod \#03-20300
Stiffener Bracket "A" - fabricate from .063, 2024T3 aluminum sheet
Stiffener Bracket "B" approximately 1' x 1' \#03-28350
Bushing (if needed) - fabricate from $1 / 4^{\prime \prime}$ ID 3/8" OD, $1015 / 1020$ steel stock
\#03-16700

Ercoupe, Forney, Alon, Mooney Shoulder Harness Installation
 11/23/2000

Disclaimer:

I am neither a mechanic nor a structural engineer. This document relates the method I used to install a shoulder harness in my Alon in the hope that it helps you to install a harness in your aircraft. The accompanying documents were prepared by a Designated Engineering Representative, Dr. Richard Carlson. Dr. Carlson's analysis was accepted by the FAA FSDO in San Jose, CA as "approved data."

Dr. Carlson examined my aircraft and acted on what he saw. This data officially applies only to my aircraft but I have no reason to believe that my aircraft structure is any different from others in the Ercoupe/Aircoupe series.

My description below of the method of attachment to the airframe is as Dr. Carlson described it to me. The actual installation of the harness must be done under the supervision of a duly rated mechanic and must be approved by the FAA via a Form 337.

Why install a shoulder harness? What else is needed?

If for some reason your aircraft comes to a sudden stop, it is best not to have your face and brains smashed in. According to a lecture I attended at "Airventure '99," during a rapid stop at above 3 G deceleration, your limbs and head will flail uncontrollably. If not artificially restrained, you will not be able to prevent them from forcefully striking objects inside the plane. You already have lap belts installed in your aircraft. A shoulder harness will prevent your body from bending at the waist and striking the wheel and instrument panel. The lap belts in your aircraft (and the attachment method to the airframe) were probably designed to withstand a 9G deceleration. The method of attaching the shoulder harnesses to the airframe depicted in the accompanying drawings are also intended to withstand a 9 G deceleration with a suitable safety factor, according to Dr. Carlson's analysis.

Dr. Carlson did not believe it is possible to provide for much greater decelerations, given the lack of structure in the Ercoupe to attach the harness to, although the human body can withstand greater deceleration without damage if it is properly restrained. According to the lecture at Airventure, additional protection in an accident could be obtained by preventing whiplash and by providing protection for vertical deceleration. I am working a modification for my Alon seats to provide a head restraint. I am also planning on reupholstering my seats using energy absorbing foam similar to that installed in military aircraft and the Space Shuttle seats to provide better vertical protection.

Description:

The purpose of the shoulder harness addition is to restrain your upper torso and head against nine times their weight in a forward direction. Because the 'coupe is monocoque construction, there is no structure as described in AC43.13b to which a shoulder harness may be tidily connected. As a result, the only practical method is to tie it to is the skin and to distribute the force in such a way that the skin ultimately yields and wrinkles. A large plate riveted to the skin with enough rivets so that the rivets won't tear out can be used, but a means must be found to pass the plate through frame " F " to the passenger compartment. This method requires many rivets through the skin plus either passing the plate between frame "F" and the skin or penetrating frame "F."

The method we chose is similar to the one used for the factory installed lap belts. The rivets that attach frames " F " and " G " are used to transfer the load from the harnesses to the skin. (One of the photos shows an additional small stiffener used in the Alon that is not included in the calculations.) At each frame, a fabricated "U" channel is used to stiffen the frame and distribute the load along several inches of the skin-frame joint. The analysis requires that at least five rivets lie under each of the skin-frame joints to carry the load from the frame to the skin. Because each aircraft is hand assembled, the number of rivets at each joint (and their spacing) may vary. Therefore, it may be necessary to add rivets to that area of the joint if there are not enough (in my aircraft, only frame "G" required extra rivets). A threaded steel rod is used to tie the two frames together along with standard nuts and washers. In the passenger compartment, a threaded clevis tie rod terminal provides the connection to the harness. All hardware is standard and materials are readily available; the only fabrication required is cutting and threading the rod and fabricating the stiffeners from sheet metal.

The choice of a shoulder harness is up to you. Any TSO'd seatbelt/harness assembly may be used. There are many different styles of hardware and lengths available, so choose wisely. I wanted a harness and lap belt that was a single assembly plus an inertia reel, so I ordered a custom belt. My belt comes from AmSafe and is designated with their part number 4013-1-01A-XXXX (where XXXX is the color code). A bolt, nut, and bushing retains the inertia reel in the clevis. I fabricated the bushing from steel bushing stock because there is no ready-made part available.

Certification suggestion:

The harness mechanical installation must be approved by the FAA on a Form 337 because this is not a standard repair or an STC'd modification. It is wise to informally submit sample paperwork to the FSDO before doing any work to determine if there is any potential approval problem. The Flight Standards District Office (FSDO) that has jurisdiction over your region must sign/stamp the 337 for your aircraft to be airworthy. The A\&P (or IA) who also signs the 337 can do all the FAA legwork for you or you can visit an FAA Inspector yourself - if you do visit the inspector, be prepared to explain which A\&P will be supervising or doing the work. In my case, I spoke with the Inspector and explained what I wanted to accomplish, but the Inspector then preferred to deal directly with my A\&P. Make sure that an Inspector says to go ahead with the installation before starting on it! It is also likely that the inspector will require a field inspection.

This was true in my case, with the inspector visiting my hangar and looking into the tailcone before I closed it all up, then approving the completed installation after the harnesses were installed.

Construction and assembly suggestions:

There are many routes to follow in fabricating the pieces and installing them in your plane. Depending on your relationship with your FBO or independent A\&P plus your own resources and capabilities, you can go any route from doing most of the work yourself to having someone else doing the complete installation and supervising the approval. Ultimately, an A\&P must sign and submit the 337 to the FAA, so you should determine the ground-rules before doing any work. One of the most satisfying ways to install the harness is to do all the work yourself, then have the A\&P inspect it. All hardware and raw materials can be ordered from a supplier like Aircraft Spruce and Specialty - their receipts can be used as evidence that you have used real aircraft hardware in the event the Inspector asks for proof.

Some hints:

1. The frame " F " attachment point should be located on the centerline of each seat, but no measurements are given in the analysis. The rod should be installed perpendicular to the back of the seat (pointed as straight in the direction the aircraft flies as it can be). One of the photos shows how I used a string from the panel to the tailcone to locate the attachments.
2. Buy and use aircraft hardware only. A shoulder harness is a safety system and you want to be sure it will work. Use only the specified steel rod, the large pattern AN970 washers, and the clevis to ensure strengths shown in the analysis.
3. The skin of your aircraft is not the place to learn riveting. If you haven't done it before, pay to have two skilled people set and buck the extra rivets. The skin is only .020 thick and can buckle very easily and look bad.
4. You should be able to rivet the stiffeners to the frames yourself with a rivet squeezer. This is not the place for hardware-store pop rivets. Structural rivets are specified.
5. Be sure to use the specified radius when bending the stiffeners. It is required to prevent cracking.
6. No dimension is provided for the tie rods due to differences between aircraft. Determine your rod length by measuring the distance between frames " F " and " G " and adding enough so that the clevis and the rearmost nut can be threaded onto the rod. Length of the threads is determined by the need to maneuver the rod into position with the middle two nuts, lock washers, and flat washers in place. Use the sketch dimension for reference only. The two sides of my aircraft were $1 / 4$ " different- the same length rod could be used for both, but just barely. I had to make the threads approximately $1 / 4$ " longer than the sketch. Thread the steel rod carefully to get clean threads. Remember that the proper outside diameter is less than 0.25 ". Run the die no more than 90 degrees at a time and back off to clear chips or they can ruin the thread.
7. To prevent corrosion it is a good idea (but not required) to alodine the aluminum stiffeners and to paint both the stiffeners and rods with zinc chromate before installation.
8. During assembly, be sure to use lock washers in the three positions shown. Also be sure to thread the rod into the clevis at least $1 / 2$ ". Try to keep the frames perpendicular to the rod as you tighten the hardware. Remember to use appropriate torque values on the nuts per AC 43.13 b .
The larger stiffener goes on frame " F " and the smaller on " G ." The stiffeners should be attached to the rear of the frames as close as possible to the skin without bearing against it.
9. My hat shelf rear bulkhead is .020 aluminum. I cut $7 / 8$ " holes for grommets where the clevises pass through. This bulkhead is non-structural and is upholstery repair so you are free to do anything that looks good.
10. When making the log entries to go with the 337 , don't forget weight and balance. The added mounting components in my aircraft weighed 13.5 ounces per side. I used the mid-point between frames " F " and " G " as the moment arm. Don't forget the added weight of the harness as well. The FAA Inspector required the mention of repetitive inspection on the 337 .

The Harness:

The seat centerline installation is meant for a four-point harness. Any TSO'd harness may be used. I was told that there is no TSO for the shoulder portion, only the lap belts. There are ready-made harnesses available from Wag-AERO that appear to be usable and are relatively inexpensive, but they do not have inertia reels and come in four separate parts that must be joined as you put them on.

This is the most personal part of the installation because you will wear the harness and have to look at it for years. For that reason, I chose a harness made by Amsafe, which is similar to the one they designed for the Cirrus SR-20. The shoulder straps on this harness are permanently attached to the lap belts at the buckle so that putting them on and taking them off is simple. The Amsafe harness is available in many colors. Amsafe designed, TSO'd, and fabricated a harness specifically for this application with a part number of 4013-1-01A-XXXX, where XXXX is the color number.

The inertia reels are attached to the clevises with AN4 bolts and AN 365-424 nuts. The inertia reel bracket has a .375 hole so a bushing is required. Because no standard AN part is available, I fabricated one by cutting to length .25 ID / . 375 OD - 4130 steel bushing stock available from Aircraft Spruce.

Suppliers:

AmSafe (harness)
contact Tom Hogdon (and tell him I sent you)
Amsafe, Inc.
240 N. 48th Ave.
Phoenix, AZ 85043
602-850-2777

$$
-2702 \text { cust seru }
$$

Aircraft Spruce and Specialty (hardware and raw material)
Aircraft Spruce \& Specialty Co.
225 Airport Circle
Corona, CA 91720
800-824-1930
Wag Aero (harness)
P.O. Box 181

1216 North Road
Lyons, WI 53148
800-558-6868

Installed pilot and passenger shoulder HARNESS ATTACHMENTS PER ATTACHED
FORM \&110-3 ANALYSIS REPORT DATED 7-29-99, INSTALLATION WAS PERFORMED IN ACCORDANCE WITH THE FOLLOWING PARAGRAPHS OF AC 43.13.-1B/2A: $4-1,2,4,50,51,52,53,56,57,58$ USING CHAPTER 7 TABLE $7-1$ TORQUE VALUES,

WEIGHT, BALANCE AND EQUIPMENT LIST REVISED,

CONTINUED AIRWORTHINESS REQUIRES A VISUAL INSPECTION AND OPERATIONAL CHECK ANNUALLY IN ACCORDANCE WITH FAR 43 APPENDIX D.

(

V. Sreess AnAlysis
4. SHOULDER HARNGSS ATTACHMENT

COMPARING PSHM DSHY MAGNITVDE 5 GICOM PAGE 6, AND THE LUGICLENIS. QUNENTSCONS. PSNX IS THE CMTICAL LOADING LONOITION.
i. SMOULDER HARNESS LUE C 4130

4T SEC A-A:

$$
\begin{aligned}
& \sigma_{b \mu}=\frac{642}{(.25)(1 / 89)}=13,660 \mathrm{p51} \\
& \sigma_{t}=\frac{682}{(1.00-.25)(\cdot 188)}=4,553 \mathrm{ps}
\end{aligned}
$$

AT SEC-B-B

$$
\tau_{s}=\frac{642}{(2)(.500-.25)}=1284 \mathrm{psl}
$$

2: ATrAEM BaT (AN-4)

$$
\begin{aligned}
& \text { DOWSLE SHEAR; } P_{55 /}=3682 \\
& \therefore \text { M.S. } 15 \text { GBREF. }
\end{aligned}
$$

B. HARNESS-TO-AIRFRAME LOAD TRAMSFER

1. $25^{\prime \prime}$ DIA. THREADED STEEL (.4/30-125K51) HAS SAME ALLOWABLE TENSION LOAO 45 AN-4 5OLJ:

$$
\begin{align*}
& \quad P_{r_{4}}=4080^{\#} \\
& \therefore \quad M 5=\frac{4080}{442}-1=
\end{align*}
$$

C. AIRERAME ATTACHMENT
1.. STEGLROD
ROD is ATRACHED TO FRAMES "F" \& "G". BY AN4 NUT5, UNCK WASHERSI AN 970 WRTHERS, AXD "FORNED" .063" CHANNEL5 KHICH SRE RIVETED TO THE FRAMES.
ASSUMI.NG A 60-40 DISTRIBUTION OF THE 642* HARINES5 LOAD=

$$
\begin{aligned}
& P_{S_{H}+F}=(.6)(642)=385 \\
& P_{3+}+\frac{4}{}=(.4)(642)=257
\end{aligned}
$$

JHEATR SureEsS $A T$ FRAME "F" WEB-LEG INTERSECTION 1S:

$$
\tau_{s}=\frac{(385)}{(4,75)(-025)}=3242 \mathrm{P51}
$$

\therefore STEFF ROD ATEACHMENT (S) MS ARE HIGH-

Stiffener "A" and "B"
MATERIAL 2024-T3 . 062 THK
Note: . Oq0 MIN BEND RADIUS

Tie Rod-Harness Attachment
Material: 0.25 dia. \#4130 Steel Rod Stock
Finish: none

AMSAFE

CERTIFICATE OF CONFORMANCE

I certify that the article(s) listed below:

* Conforms to all applicable drawing dimensions and specifications.
*(If applicable) Meets the requirements of FAR 25.853 (a) Compartment Interiors.
*(If applicable) Conforms to British CAA specifications.
*(If applicable) All parts/materials are certified new, conform to the design data, and are in airworthy condition.
*Meets all the requirements of TSO-C114.
*The parts/materials reflected herein were produced under a FAA approved Manufacturing and Quality Assurance system/methods as set in FAR Part 21 Sub-Part O, Para. 21.601.
* The conditions and tests required for TSO approval of this article are minimum performance standards.
*It is the responsibility of those installing this article either on or within a specific type or class of aircraft to determine that the aircraft installation conditions are are within the TSO standard.
*TSO articles must have separate approval for installation in an aircraft. The article may be installed only if performed under 14 CFR part 43 or applicable airworthiness requirements.
*For the latest copy of the CMM/SMM, please log onto www.amsafeaviation.com
CUSTOMER NAME: LYNOL AMERO SALES ORDER NO. S143170

This document is the property of the customer and should remain with the articles listed above.
PLEASE DELIVER TO THE QUALITY ASSURANCE DEPARTMENT

REMARKS:

NEW

AMSAFE INC

1043 NORTH 47th. AVENUE
PHOENIX, ARIZONA 85043 USA
PHONE: (602) 850-2850 FAX:(602) 850-2812

CUSTOMER NO.
10005890
LYNOL AMERO
(BOEING)
1007 199TH AVE E
LAKE TAPPS, WA 98391
United States of America

SALES ORDER NO.	BOL NO.
S143170	000149020

LYNOL AMERO
(BOEING)
1007 199TH AVE E
LAKE TAPPS, WA 98391
United States of America
Ship to ID: 10005890

CUSTOMER ORDER NO. TERMS	
AMERO	CRCARD

FREIGHT

Ship to ID: 10005890	
SHIP VIA	F.O.B.
FEDEX GROUND	
ORIGIN	

Sales Order Remarks:
Remarks:

	ITEM NUMBER !			OTY	OTY	OTY BACK
LINE	description	DRAWING AND CERTIFICATIONS	DUE DATE	ORDERED	SHIPPED	ORDERED

1 4013-1-01A-8088 DRAWING: 401 RESTRAINT SYSTEM ASSY.

CERT: TSO-C114	2007-12-10		2	2
Lot/Serial Numbers Shipped Quantity	Expire	Ref.	2	
s143170-1	2.0			

0

SPECIAL INSTRUCTIONS:

